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ABSTRACT

This paper treats the stability of steady-state solutions of some simple, latitude-dependent, energy-
balance climate models. For north-south symmetric solutions of models with an ice-cap-type albedo feed-
back, and for the sum of horizontal transport and infrared radiation given by a linear operator,
it is possible to prove a *‘slope-stability”’ theorem; i.e., if the local slope of the steady-state iceline latitude
versus solar constant curve is positive (negative) the steady-state solution is stable (unstable). Certain
rather weak restrictions on the albedo function and on the heat transport are required for the proof,

and their physical basis is discussed in the text.

1. Introduction

The parallel study of climate models within a hier-
archy of models of increasing complexity is now a
well-established strategy in climate theory [for a dis-
cussion see the review of Schneider and Dickinson
(1974)]. One hopes that some features will be com-
mon to all models from the simplest zero-dimen-
sional globally averaged models to the most complex
three-dimensional general circulation models. The
one-dimensional Budyko-Sellers models have proven
to be useful in exploring such properties. For ex-
ample, the catastrophic transition to an ice-covered
planet if the solar constant is lowered by a few per-
cent was first discovered independently by Budyko
(1968, 1969) and Sellers (1969) and appears to be
common to a large variety of more complicated
models (e.g., Temkin and Snell, 1976) ranging up to
general circulation models (Manabe and Wetherald,
private communication).

The purpose of this paper is to sketch the proof
of a stability theorem for a large class of energy-
balance climate models which include the Budyko-
Sellers models. The linear stability analysis of solu-
tions of several individual models in the class has
been given previously by a number of investigators
(Schneider and Gal-Chen, 1973; Held and Suarez,
1974; North, 1975a,b; Ghil, 1976; Su and Hsieh,
1976; Fredericksen, 1976; Drazin and Griffel, 1977;
North, 1977). In addition, approaches to the full non-
linear stability problem have been suggested by Ghil
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(1976) and North ez al. (1979). Our theorem clarifies
the central result of these studies, and applies to a
larger class of mean annual models than those repre-
sented above. :

We shall not dwell on the well-known assumptions
and limitations inherent in the Budyko-Sellers ap-
proach, since these have been adequately discussed
in the recent literature. We shall start by motivating
our study with a simple example in this section. In
Section 2 we proceed to obtain formal solutions to
the class of models being considered. In Section 3
we derive the so-called slope-stability theorem for
that class.

We first consider a very simple model, varianis
of which have been discussed recently by several
authors (Sellers, 1974; Crawfoord and Killen, 1978;
Fraedrich, 1978). The model is a zero-dimensional
energy-balance model (globally averaged) which
may be defined by

d

c 7 To + I(Ty) = Qa(Ty), (1.1)

where C is the heat capacity per unit area, T, the
globally (and annually) averaged temperature, I(T,)
the infrared radiation rate, Q the solar constant di-
vided by 4, and a(7,) the globally (and annually)
averaged co-albedo, which is presumed to be a func-
tion of T, because of the ice-cap albedo feedback.
The steady-state solutions to (1.1) are easily ob-
tained by setting d/dt to zero and solving the re-
sulting algebraic relation for T, as a function of Q.
For a given Q there are typically several roots, as
illustrated by the solution curve in Fig. 1, obtained

from a model with a linear infrared law and a cubic
co-albedo.
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In order to examine the linear stability, let Ty = T
+ 8(r), where T is a solution to the steady-state
psroblem. Then to the first order in 6(2),

Cé(t) + (I' — Qa')s(t) = 9, (1.2)

where a prime denotes the derivative, evaluated at
T, = T3. The stability is determined by the sign of
the expression in parentheses. This sign can be ex-
pressed in terms of the slope of the solution curve
O(T,), as follows. Differentiating the steady-state
equationf = Qa and substituting, Eq. (1.2) becomes

d? as(t) = 0.

0

Cé(@) +

(1.3)

This last equation embodies the ‘‘slope-stability’
theorem

dg

dT,

a9
dT,

> 0 < stability
(1.4)

< 0 < instability

The theorem is easily interpreted since branches
with negative slope have an apparent negative heat
capacity and are therefore unphysical. Budyko
(1972) advanced a heuristic argument along these
lines as a stability proof, but it is not obvious that
it applies to systems with spatial extension. One
such example is a model of a star like the sun which
has uniform temperature, is held together by its own
gravity, and a heat balance is maintained by nuclear
reactions in the interior and blackbody radiation at
the surface. Increase of the heating rate leads to an
increased radius and a cooler star (Nauenberg and
Weisskopf, 1978). We presume such a star is stable.
Counterexamples like this suggest that when possi-
ble we should construct rigorous proofs for stability.
Moreover, rigorous mathematical results should
help physical insight advance into still uncertain
areas of climate theory.

This paper concentrates on one-dimensional en-
ergy-balance models which retain the sine of the lati-
tude, x, as the single spatial variable. Hemispheric
symmetry is assumed, so that only values of x from
0 to 1 need to be considered. The horizontal trans-
" port and infrared radiation laws are assumed to be
represented by operators which are linear in the
temperature field, and whose sum has an inverse
with certain physically reasonable properties. Rather
than assuming an explicit temperature dependence
for the co-albedo as in the global model (1.1), an
implicit temperature dependence is introduced
through a parameter x;, the sine of the latitude of
the ice cap edge; this edge is assumed to be attached
to a given isotherm. We shall consider only tempera-
ture fields having a unique x,;, and further assume
that the temperature decreases northward across x;.
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Fi1G. 1. Global average temperature T, as a function of the
solar constant Q (in units of the present value Q,), obtained
from a global model having a globally and annually averaged
co-albedo depending on T, due to ice cap-albedo feedback, as
discussed in the text. The crosses indicate three solutions cor-
responding to the present value of the solar constant.

Just as the multiple solutions of the global model
for a given solar constant are specified by the value
of T,, the different solution branches of the one-
dimensional models are completely specified by the
value of x,. Fig. 2 shows an example of an exact
solution to a specific model of this type (North,
1975a). A given point on the curve corresponds to
a unique temperature field. We shall prove a stability
theorem related to the sign of the local slope of this
graph. Drazin and Griffel (1977) have found that un-
der certain circumstances there can exist north-
south unsymmetrical solutions. In such cases more
than x, and Q would be required to specify a given
solution and our theorem does not hold.

The outline of the paper is as follows: Section 2
employs the formalism of linear operators and their
corresponding Green’s functions to construct steady-
state solutions to the model equations, and to derive
a transcendental equation whose roots determine
the stability of these solutions. Section-3 estab-
lishes the slope-stability theorem by showing that
the sign of the minimum root, which determines
whether perturbations will grow in time or decay
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FiG. 2. A graph of the sine of the latitude of the iceline, x,,
as a function of the solar constant Q (in units of the present
value Q,) obtained from a zonal model having diffusive heat
transport, as discussed by North (1975a). The co-albedo depends
on the temperature field implicitly via x;, which is attached to
an isotherm. Multiple solutions correspond to a given value of
the solar constant but different values of x,.

back to equilibrium, is identical to the sign of the
slope of the solution curve x,(Q) at the point which
corresponds to the particular temperature field being
perturbed. Also discussed in Section 3 are the as-
sumptions for this theorem, its relation to the in-
finite instability of small ice caps found in some
cases (indicated by the cusp near x; = 1 in Fig. 2),
and its relation to the formulation in terms of T,
rather than x,. Section 4 gives a brief discussion of
results and concludes the paper. Two appendices
are devoted to special cases: Appendix A treafs the
Green’s functions of the Budyko and diffusive
models, Appendix B the stability for a step-function
albedo. '

2. Steady-state solutions and stability eigenvalues

'The class of models considered may be defined
in terms of their corresponding energy balance
equation

LIT4(x) + fx) = 0SWa(x,xy).  2.1)

Here Tz(x) is the equilibrium (sea level) temperature
field, f(x) a given positive function associated with
the outgoing radiation rule, Q the solar constant
divided by 4, S(x) the mean annual normalized solar
distribution reaching the top of the atmosphere,
a(x,x,) the co-albedo which is a function of the sine
of the latitude, x, and the sine of the latitude of the
ice cap edge, x,. L is a linear operator representing
horizontal transport and the part of the infrared rule
which is linear and homogeneous in T(x).
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We may illustrate the various terms in (2.1) with
some specific examples. In the diffusive transport
model of North (1975a,b)

d d
LplT(x) = — -ED(I - xz)—gx— T(x) + BT(x) (2.2)

and f(x) = A = constant. The first term here takes
account of the heat transported by transient eddies,
and A + BT is Budyko’s infrared law. A mean cir-
culation term v(x) - VT as in Sellers (1969) might also
be included, as well as possible latitude-dependence
in D, A and B. In the Budyko model (Budyko, 1969;
Chylek and Coakley, 1975)

1
LITIK) = y J dyl3x — y) — JT() + BT()
0

= y(IT(x) — Ty) + BT(x), (2.3)
and again f(x) = A.

The co-albedo in the solar input term on the right-
hand side (RHS) of (2.1) has often been assumed
to be discontinuous at x = x,, or as a function of
temperature it is taken as discontinuous at a given
iceline value T,. These are equivalent formulations.
However, there is no observational evidence for such
a sharp transition. Even neglecting the effect of
clouds and seasonal snow cover, we may expect
that the zonal average of an iceline having large
longitudinal variations such as Earth’s would intro-
duce considerable smoothing. Previous proofs of the
stability theorem have been restricted to the step
function co-albedo discussed in Appendix B. Unless
otherwise stated we shall regard the source terms
in (2.1) as smooth functions of x. As examples of
smooth co-albedo functions one might generalize

- the step function of Appendix B to include a linear

transition of width Ax, around x,, or simply replace
it with a smooth function such as tani[(x — x,)/Ax,].
The presence of other feedback mechanisms, such
as variable cloudiness, might also require some ex-
plicit temperature-dependence in the co-albedo
which cannot be directly formulated in terms of lati-
tude, and we shall exclude such processes here.

In addition to (2.1) it is necessary to specify the
iceline condition

Te(xy) = Ty, 2.9

where T has a fixed valie (Budyko, 1969) usually
taken to be —10°C. This condition introduces non-
linearity into the model. Finally, we specify the
boundary conditions such that no net heat flows
across the equator (north—-south symmetry), x = 0,
or into the pole, x = 1. In what follows it is neces-
sary to assume that a Green’s function G, for L
exists satisfying the boundary conditions and

LIG,l(x,y) = 8(x — y), (2.5)
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where 8(x — y) is the Dirac function. The existence
of G, limits the class of operators L, but this is
not a severe restriction since any physical, linear
system such as the ones we consider should have
a unique response to a localized heat source.

As an example for the case of diffusive transport,
L = Lygivenby Eq. (2.2), we may construct Gy(x,y)
explicitly

Ghxy) = 3 f—"———(xim) :

n=0

where f(x),n =0, 1, 2, . .., are the orthonormal
eigenfunctions of L, and L, > 0 are the correspond-
ing discrete eigenvalues. [Ghil (1976) has shown that
standard Sturm-Liouville results apply here.] For D
constant, the eigenfunctions are just the even-in-
dexed, normalized Legendre polynomials, (2!/
+ D)2Py(x), and L, = DI(l + 1) + B with [ = 2n.
In this latter case a closed form can be found for
G¥ in terms of hypergeometric functions. The spec-
tral form (2.6) is discussed in Appendix A along
with its counterpart for the Budyko model.

Returning to the general case, the equilibrium tem-
perature field is given by the nonlinear integral
equation

(2.6)

Tpx) = J dyGyx , OS(y)a(y,xs) — fF(],

0

Q2.7

where T;(x) enters the integrand through x,.
Evaluating (2.7) at x = x; yields

1

T, = J dyGolxs,MIQSa(y,xs) — f(¥)]. (2.8)
0

For a given x,, Eq. (2.8) states that Q is deter-

mined; in fact, we may solve for it and obtain

T, + J dyGolrs ) f ()
0 =0k)= —=
dyGoxs,y)Sa(y ,x,)

0
From Eq. (2.9) we have the desired relationship be-
tween x, and Q, so that we may plot a graph like
that in Fig. 2. Given values x, and 0, we may com-
pute the unique temperature field Tz(x) correspond-
ing to them from (2.7). Hence, the steady-state prob-
lem is formally solved.

For a fixed value of the solar constant, we con-
sider now a small perturbation of the temperature
field about the steady-state solution, and apply the
standard linear stability technique. The variation in
temperature will also produce a variation in ic€ cap
size through the ice-albedo feedback mechanism
(provided 0 < x, < 1; special cases x;, = 0, 1 will be
treated separately). Thus in addition to

T(x,t) = Teg(x) + 8T(x,1),

(2.9)

(2.10)
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we must also have

x(1) = x; + dx,(¢), (2.11)

where the ice cap variation 8x; may be determined
in terms of 87 by expanding the iceline condition
to first order in the small quantities. To first order
in 8x, and 8T we have the temperature at the per-
turbed iceline

T
Tix, + oxg,8) = T(x,,t) + (9—) ox,
0x /4,

= Tpxy) + 0T(x,,0) + Tpbxs,

where T is (dT;/dx),-, . Due to the iceline condi-
tions T(x; + 8x,,t) = T, = Ty(x,), the lowest order
terms cancel, and we have

8x, = 8T (x4, 1)/(—Tk). (2.12)
Ice cap models for which x, may be defined must
have Ty(x) decrease as we cross to the north of the
iceline so that T, < 0. Thus Eq. (2.12) says that a
positive variation in temperature away from equilib-
rium causes the ice cap to shrink, and the amount
of shrinkage is inversely proportional to the tempera-
ture drop across the equilibrium iceline. The depend-
ence on the temperature drop becomes clear if we
picture the neighborhood of the iceline having a lin-
ear falloff in 7T, and constant 8T. Thus in order for
x to follow an isotherm, we need 87/8x, = |slope|.
Note that in writing Eq. (2.12) we have implicitly
assumed that T} exists, which may not hold when
the source terms have a discontinuity and L con-
tains integral operators as in the Budyko case. No
discontinuities in temperature arise in Sturm-Liou-
ville type problems, but in other cases it may be
necessary to smooth the source terms.

The allowed temperature variations are deter-
mined by the requirement that the time-dependent
energy balance equation must be satisfied to first
order in the small quantities. Expanding

C —(i Ge,t) + L[T1(x )
ot

= QS(x)a(x, x; + 6xg) _'f(x)
to first order in &x; and 8T and eliminating 7, by
employing Eq. (2.1) leads to
0
o > 8T (x,t) + L[8T)(x,t)

= OS(x)ay(x,x)dx,, (2.13)

where a, indicates da(x,x,)/0x,. If we substitute Eq.
(2.12) for the iceline shift, we have a linear equation
in 8T(x,r) which has solutions of the form

8T(x,t) = 6T(x)e~N/C, (2.14)



1182

Substituting (2.14) into Eq. (2.13) and cancelling ex-
ponentials, we obtain for §7(x) the equation

(L — M[BT)(x)
= OS(x)a(x,x)8T(x)(—TL). (2.15)

The possible values of the parameter A, the ‘‘stability
eigenvalues’ A, of this equation, determine the sta-
bility of the equilibrium solution T(x) under a per-
turbation given by the associated eigenfunction
8T, (x). If any of these perturbations (modes) have
an eigenvalue with a negative real part, the equi-
librium state is unstable. Equilibrium states having
all Re),, > 0 return to equilibrium with a decay time
"‘C/ Re}\mm.

Eq. (2.15) is an important tool in the study of linear
stability and has been previously analyzed for a num-
ber of simple climate models. [See for example the
appendix of Drazin and Griffel (1977) where the sta-
bility eigenvalue equation for the diffusion model
with step-function albedo is given by Eq. (A6).] Our
interest here, however, is not in determining the
stability of a given solution to a given model. Instead
we wish to relate the stability of such a solution
to the sign of the slope of the steady-state iceline
function at the point corresponding to that solution.

We proceed by first eliminating the eigenfunctions
from (2.14) in order to obtain a scalar transcendental
equation whose roots give the stability eigenvalues.
In the next section we then relate these roots to
properties of the steady-state solution whose sta-
bility is being tested.

We may define a Green’s function G, which is a
generalization of G, in Eq. (2.5) and satisfies

L — MIG\kx.y) = 8(x — y), (2.18)

along with the boundary conditions atx = 0, 1. We
may think of G, as a function of the continuous
parameter A except at the eigenvalues of L where it
is not defined. For the diffusive case G, may be
constructed explicitly:

Glry) = 3 DA,

(2.17)
n=0 Ln — A

where we have used the notation of Eq. (2.6) (cf.
also Appendix A). From Eq. (2.17) one sees directly
that GP is singularat A = L,,n =0,1,2,....1In
fact, in these examples it is a meromorphic
function of A with simple poles at L,,.

Now the stability equation (2.15) may be rewritten
in the form

ST() = [ dyGy(x,y)
[0S ax(y,x)STC)(~TH)], (2.18)

where the boundary conditions are incorporated
into G,. By evaluating this expression at x = x, we
may cancel 8T(x,) and obtain a formula for T, i.e.,
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) 1
T} = J dyG e NQS My ). (2.19)
0
On the other hand, if we differentiate (2.7) and
evaluate the result at x = x,, we obtain an equivalent
expression for the slope of T at the iceline:
] 0

—dT;
=)
x [@S(aly,xs) — f(M]. (2.20)

Similarly we may differentiate (2.8) with respect to
x5, noting that the first term on the RHS after
differentiation ‘is just given by (2.20). Since T; is
constant we obtain, after substitution,

1
= _T;«J = J dyaGO(xsay)/axs

Ty = J dyG(xe,y) 36— [0SGa(yx)). 2.21)

0 X g

In the differentiation on the RHS of (2.21) we must
allow Q to depend on x,. Substituting the result into
Eq. (2.19) and combining the terms involving
as(y,x;) yields

K, d0 _ J
Q dx;

1
dy[G\(xs,Y)

’ = Gylxs ,Y)]S(}’)az()’ 2 Xs)s (222)
where

1
K, = J dyGols )Salx).  (2.23)

0

If we subtract Eq. (2.5) from (2.16) and use the
linearity property, we obtain

L[G\ — Gol(x,y) = AG\(x,),

so that the term appearing in square brackets may
be rewritten as

(2.24)

Ga,y) — Goliry) = A J 4G )G zy). (2.25)

0

Substituting this expression into Eq. (2.22) gives the
final form of the eigenvalue equation as

K, dQ

dx,

= AF(N), (2.26)

where the roots A; are determined by the properties
of the function F()\), defined by

FQ\) = Jl

0.

1
dy J dzG(xs,z)

' Grz)SMasy,xy). 227

F()\) depends on \ through Green’s function G\ de-
fined by Eq. (2.16). For a given climatic state
Tx(x; Q), represented by a single point (x;,0) on an

‘iceline curve such as in Fig. 2, the left-hand side of

Eq. (2.26) will be fixed. Thus (2.26) is a transcen-
dental equation for A; the climate Tp(x; Q) will .be
stable only when there are no roots A of (2.26) having
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a negative real part. In the next section we shall
argue that for physically reasonable models, the sign
of the real part of the smallest value of A is identical
to the sign of the iceline slope, dQ/dx,.

3. Slope-stability theorem

In the previous section we derived a transcen-
dental equation whose roots A, are the stability eigen-
values. If the lowest eigenvalue has a positive (nega-
tive) real part, the system is stable (unstable). In this
section we shall argue that for a certain class of
models the slope-stability theorem

dg
dx,

dg
dx,

follows from the properties of the eigenvalue equa-
tion (2.26). First, we state the main assumptions
which limit the class of models considered. Aside
from the assumption of north-south symmetric solu-
tions where the single index x; may be used [implicit
is also the assumption that Tz(x) is decreasing at x
= x,], we impose the following conditions:

> (0 <> stability
(3.1

< 0 < instability

(i) The feedback is of the ice-cap type. Specifically
as(x,x,) = 0 for all x, x; between 0 and 1.
(if) The Green’s function Gy(x,y) is positive.
(iii) The generalized G,(x,y) is positive for negative
real values of A with the asymptotic behavior
8x — y)(—N)as A— —oo.

The first assumption is obvious but does eliminate
certain cloud band feedback mechanisms from con-
sideration.

To clarify condition (ii), we first note that when
an arbitrary heat source p(y) is introduced it
produces a temperature distribution T(x) = [ dy
X Go(x,y) p(3). If in addition p(y) is increased by
adding heat at a rate g at latitude x,, so that Ap(y)
= gd(y — x,), then the temperature distribution
changes by AT(x) = qGy(x,x,). Thus saying that G,
is positive is equivalent to the statement that heat
added at one latitude will not lead to a decrease
in temperature at any other latitude. Fig. 3 shows
an example of the behavior of the Green’s function
corresponding to L,, Eqs. (2.2) and (2.6) with D
constant. This condition holds for L of Sturm-Liou-
ville type, and a proof of this is sketched in Appendix
A. We suspect that it holds for any physically rea-
sonable L including some integral operators such as
Budyko’s (cf. Appendix A). Similar conditions have
been applied to other stability problems, e.g.,
Joseph (1976).

The increasing localization of G, in Fig. 3 for de-
creasing values of D (or increasing B) is related to
condition (iii). For the Sturm-Liouville type systems
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SINE OF THE LATITUDE x—>

DIFFUSIVE RESPONSE FUNCTION G,(x,x,) —>

Fi1G. 3. The diffusive response function G(x,x,) given in Eq.
(2.6) of the text, computed with B = 1 and various (constant)
values of D. The area under the curve is independent of D (units
=0.2).

the expression 8(x — y)/(—\) corresponds to keep-
ing the first term in an asymptotic expansion for
large negative A and using the completeness relation
S fa(X)fa(y) = 8(x — y). Adding this relation di-
vided by —A to (2.17) leads to

GP(x,y) = —8(x — )\

+ 3 L)L) : (3.2)

L,
(Ln - }‘))\
the second term on the RHS is equivalent to
L[GP](x,y)/\,which can also be obtained formally from
rearranging (2.16). Although more singular at x =y
than the first term, since it contains derivatives of
delta functions, it is smaller by a factor of order
1/x. This suggests that if GP(x,y) only appears as a
factor in an integrand multiplied by sufficiently well-
behaved functions, (iii) will hold. It is possible to
exhibit this asymptotic behavior of L explicitly in
certain specific cases.

This ends the discussion of the conditions (i), (ii),
and (iii) which are sufficient for our proof to be
valid. The theorem may hold also for a weakened
form of these conditions in certain cases. In what
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follows the reader may wish to refer to Appendix B
where a special case is discussed.

We now return to the discussion of the stability
eigenvalues. From (ii) we clearly have

K, >0, 1 (3.3)

since each factor in the integrand of (2.23) is positive.
The behavior of F(A\) may be determined from

that of G,. According to Eq. (2.25) G, —> Gyas A =

0, and for small positive values of A we have
Ga(x,y) = Go(x,y) + N\GP(x,y) > 0;

the “‘iterated kernel,”” given by

G§¥(z,y) = J dz'Gy(z,2')Go(z",y),  (3.5)

(3.4)

represents the first term in a series expansion of
G, in powers of A. Eq. (2.25) is in fact an inhomo-
geneous Fredholm equation of the second kind, for
G,. Its solution can be represented by such a power
series in A\, a Neumann series, which converges as
long as |)\| < Ly, where L, is the first eigenvalue of
L. The coefficient of \" in the Neumann series is the
nth iterate of the kernel G,. Hence each term is
positive for positive A. Thus, G, is positive for —x
< N\ < 0 because of assumption (iii) and for 0 < A
< L, by the argument above; as A — Ly, G, — +»,
Furthermore, if we compute the derivative with re-
spect to A of Eq. (2.16) the solution of the resulting
equation may be written in the form

dG(x,y)/d\ = jdex(x,z)Gx(z,y), (3.6)
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which again is positive in this interval so that G,
is strictly monotonic for A < L,. This is sufficient
information to conclude that as A decreases through
zero, the stability function AF(X) will also decrease
through zero, and will monotonically approach its
asymptotic value, determined by the behavior of G,
to be

AFQ) —;—>—f dyGox)SMazy,x).  B.T)

0

We may now establish the slope-stability theorem
by considering the possible values of A determined
by the relation :
K, dQ

Q. dx,

for a fixed point on the equilibrium iceline curve
xs = x(Q). The graphical solution of this transcen-
dental equation is illustrated schematically in Fig. 4.
The constants L, L,, etc., are the higher eigenvalues
of L, but for now we concentrate on the region
A < L,. When the iceline slope is positive, indicated
by the solid horizontal line in Fig. 4, the smallest
possible stability eigenvalue A, is also positive, and
determined by the intersection of the horizontal line
with AF(A), computed from the Neumann series for
G\. Perturbations in this region decay to zero in a
characteristic time C/\,. This is the situation in the
positive slope branches in Fig. 2. As we approach
one of the critical points indicated in Fig. 2, dQ/dx,
as well as A\, approach zero and we have a situation
of neutral stability. Finally, in the unstable regions

= ANF(M), (2.26)

FUNCTION AF(\)—>

STABILITY

Ks dQ
Ksd@
adx,°

STABILITY
PARAMETER A —>

- oo o= - o > - o o - 5—12—0_ <0

L,

Q dxg

Fi1G. 4. A schematic graph of the right-hand-side of Eq. (2.26) of the text versus the
stability parameter A. The solid and dashed horizontal lines represent positive and nega-
tive values of the left-hand-side of Eq. (2.26), determined by the slope at a given point
on an iceline curve such as in Fig. 2. Intersections marked with circles give the stability
eigenvalues, and A, is the minimum stability eigenvalue.
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(negative slope) shown in Fig. 2, the iceline slope is
negative, and we have the situation indicated by the
dotted horizontal line in Fig. 4. In this case, the
stability eigenvalue A, is negative, so that the corre-
sponding perturbation 8T, increases in time accord-
ing to Eq. (2.14). Eventually the linearization of
T{x4(t),t] and a[x,x,(¢)] breaks down, and the exact
solution approaches one of the available stable solu-
tions for the given value of Q, for example, that of
an ice-covered or ice-free planet.

If, as Drazin and Griffel (1977) have suggested,
the iceline curve can have a cusp in some cases, S0
that dQ/dx, — —xasx; — 1, the dotted line in Fig. 4
might conceivably fall below the asymptotic value
of AF(A), so that a region of tremendous instability
{(A¢ > —») would suddenly become stable. It re-
mains then in our proof to show that the dashed
line never falls below the asymptotic level of AF(\)
as given by (3.7).

The slope of the iceline curve for equilibrium solu-
tions may be computed from Eq. (2.21) and has
the form

K, dQ
= (=T
0 dx, ( )Ql

|

where the positive constant K is defined in Eq.
(2.23). Since for the class of models (or solutions)
considered the temperature decreases as one crosses
the ice cap poleward, the first term in (3.8) is posi-
tive. The second term, on the other hand, is strictly
negative. This latter is in fact just the asymptotic
value of AF(A) which is given in (3.7). Hence,
(K/Q)(dQ/dx,) is always larger than the asymptotic
plateau by the positive amount (—7;)/Q. This con-
cludes the proof of the slope-stability theorem.

We should note that the cusp behavior of the x;
vs Q curve pointed out by Drazin and Griffel (1977)
and shown near x, = 1 in Fig. 2 comes about for the
case of a(x,x,) a step function. In this case a,(x,x;)
is a delta function so that the second term of (3.8)
can be evaluated explicitly. The cusp comes about
because the resulting expression is proportional to
Go(xs,x;5), which diverges as x, — 1. Any smoothing
of the albedo at the ice cap edge eliminates this
divergence. (In fact, we have found numerically that
a smoothing width Ax, of the order of 0.1 is suf-
ficient to remove the negative slope portion of the
curve in Fig. 2 near x; = 1 altogether.) One also
notes that the cusp is removed even in the discon-
tinuous albedo case if S(1) = 0, in agreement with
Drazin and Griffel.

We may now examine the special cases, x; = 0
and x, = 1, the ice-covered and ice-free situations.
In both cases we may neglect the ice feedback since,
for example, in the x; = 0 case the equator is well

dyGo(xg,y)S(y)ax(y,xs), (3.8)

ROBERT F. CAHALAN AND GERALD R. NORTH

1185

below —10°C so that an enormous perturbation
would be required to cause the ice cap to recede
from the equator. Hence an infinitesimal perturba-
tion of the steady-state solution causes only a per-
turbation in the temperature field and 8x, = 0. One
easily deduces that in this case the stability eigen-
values are L, > 0, and the solution is stable. The
same argument works for x; = 1.

Finally, we may relate the slope-stability theorem
as stated for the x,(Q) iceline curve to the formula-
tion in terms of the corresponding To((Q) curve, as
discussed for the globally averaged model in the
introduction. We shall see that the ‘‘heat capacity’
argument does not invariably follow in the present
class of spatially extended systems. First note that
in the special cases x; = 0, 1 as discussed in the
preceding paragraph, the connection is correct since
dT,/dQ is clearly positive and the solution is stable.
Elsewhere we may relate the iceline and T, slopes
by first integrating (2.7) over the hemisphere and
then differentiating with respect to Q:

dIy/dg = f dx J 1 dyGy(x,y)S(y)a(y,x,)

0 0
dx;
ag

Since both of the integrals above are bounded
and strictly positive, and dx/dQ changes sign at an
ordinary bifurcation by passing through infinity, we
may assert that these derivatives have the same sign
at least when |dx/dQ| is large enough. However
they could have opposite sign near a cusp for which
dx/dQ — 0. Hence, the theorem must be stated as
(3.1) in terms of x, rather than as (1.4).

+0 j dxf dyGolox,y)S (M az(y,xs).

0 0

4. Discussion

We have proven a theorem that states that the
stability of a model climate solution depends on a
property of the curve which determines the steady-
state solutions, the latitude of the ice cap edge versus
the solar constant. If the local slope of this curve is
positive (negative) the corresponding steady-state
solution will be stable (unstable). The theorem
covers a fairly broad class of models of the ice-
cap-feedback type, but certain assumptions are nec-
essary. The most important of these relate to the
Green’s function for the linear part of the problem.
Existence, positivity and a certain type of asymp-
totic behavior are sufficient for our proof to hold.
These conditions are satisfied by generalized dif-
fusive (Sturm-Liouville) models and hold for some
nonlocal models such as Budyko’s.

We have seen that positive values of the global
‘‘heat capacity’’ do not guarantee stability in these
models, although negative values definitely imply
instability. Instability may be simply shown by an
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opportune choice of perturbation, but to demon-
strate stability of a solution under an arbitrary per-
turbation is less simple, particularly in systems with
spatial extension, which may not follow intuitions
appropriate for their giobal or homogeneous coun-
terparts.

We have also pointed out that the stability of small
ice caps, as determined by the slope of the iceline
curve near x; = 1, is highly sensitive to the smooth-
ness of the albedo across the iceline. Such depend-
ence unfortunately suggests that the true sensitivity
and stability of small ice caps cannot be estimated
from such simple models. This question is clearly
important, considering the possibility of global
warming and the effect of a melting ice cap on the
present level of the oceans. The question of whether
energy and mass balance requirements are sufficient
to model the problem, or whether specific dynamical
mechanisms must be included, can only be answered
through continued study of ice cap variations on
many time scales.

Finally, one may imagine attempting to generalize
our theorem to models having more degrees of free-
dom, with additional dynamics and feedback mecha-
nisms. Rather than resort to pure speculation, we
shall remain within the present framework of one-
dimensional energy-balance models, and briefly dis-
cuss three types of extensions which may affect the
stability: different iceline conditions, nonlinearities
due to other feedbacks and climatic noise.

Generalizations of our conditions of isothermal
icelines having north-south symmetry are of interest.
Pollard (1976), for instance, has shown that if the
iceline lags slightly behind the —10°C isotherm in
time rather than following it instantaneously the
theorem still holds. We do not yet know if some
similar generalization holds for cases when more
than one index might be required to specify the
branch of a solution. For instance, in unsymmetrical
solutions with only one ice cap, one must specify
which ice cap.

Several nonlinearities merit further study:

1) As Stone (1973) has suggested, the diffusion
coefficient may be proportional to some power of
the temperature gradient.

2) Any dependence of atmospheric carbon diox-
ide, water vapor or cloudiness on the surface tem-
perature would tend to introduce some nonlinearity
in the infrared emission. The net effect has been
much contested, but since analytical solutions to
linear models are known, it would be of much in-
terest to study the effect of a nonlinear perturbation.

3) Although we have generalized the discontin-
uous coalbedo to allow for smooth variations in
latitude, a more realistic treatiment of cloudiness
would also allow the co-albedo to vary smoothly
with temperature. Even if no analytical solution
to such a nonlinear problem can be found, it may
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be possible to solve the linear stability problem
analytically.

Climatic noise is typically modeled by the addi-
tion of stochastic forcing terms having given statis-
tical properties. These then determine the statistics
of the response, or in this case the temperature fluc-
tuations. Such fluctuations will normally be governed
by our stability theorem, but new stability guestions
arise and here we mention two which merit further
study:

1) The probability of finite-amplitude fluctuations
may be sufficiently large to effect transitions be-
tween different branches of the solution curve. One
must then consider the relative stability of the states
involved. For example, states which have marginal
stability in the deterministic sense may be only
metastable in the stochastic sense.

2) The statistics of the forcing may itself depend
on the climatic state; for example, its variance may
depend on the temperature. In that case the stability
may not be related in a simple way to the deter-
ministic solution curve.

Many questions remain unanswered concerning
climatic stability, and we hope that the present
paper will help generate further interest in and study
of such questions.
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APPENDIX A

Response Functions in the Budyko and
General Diffusion Models

In the Budyko model, the combined infrared and
meridional transport terms are given by

LITIx,0) = J dzlly + BYSG& — 2) — yIT(zt), (Al)

0

and in this case it is easily verified that the
generalized response function defined in Eq. (2.16)
is given by

Gx(xa)’)
) N Y
y+B-x B-MNy+B-\N

(AZ)
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which clearly satisfies our conditions (ii) and (iii)
discussed in Section 3. Note that in the absence
of ice feedback, any heat added to a given latitude
belt does not affect the temperature gradient at any
other latitude in this model, since G, is constant for
x # y. Also, the delta function implies that any dis-
continuity in albedo yields a discontinuity in temper-
ature, so that one must be very careful in applying
the iceline condition.

Next we consider a class of models given by
energy-balance equations of the form

T d ]
C ———Dx(1 —x) —T + A
o o )1 — x?) o (x)

+ BX)T — QSx)a(x,xs) =0, (A3)

along with the boundary conditions of vanishing heat

fiux at the equator and pole, appropriate for a proto-

type planet with hemispheric symmetry, so that

daT

D@L - —| =0

r=0,1

The Green’s function for the equilibrium solution

of such a model satisfies

(Ad)

d d
[-— - D1 ‘- x?) . + B(x)] Golx,y)

=8k —y), (AS)

as well as the boundary conditions (A4). We wish to
show that

Gox,y) =0 if Bx), Dx) > 0. (A6)

The proof is identical for G, as longas B — A > 0.
We may easily demonstrate the positivity of G,

at the point x =y from the so-called ‘‘spectral

representation.”’ The eigenvalue equation

d d
[— <D - ) = + Bw|fiw

dx dx -

, = L,fux), (A7)

_ determines the orthonormal eigenfunctions £, as well
as the corresponding eigenvalues L, of the linear
operator. [See Ghil (1976) for a comparison with
standard Sturm-Liouville systems.] Multiplying
Eq. (A7) by f,(x), integrating over all x, and employ-

ing the boundary conditions to integrate the first
term by parts yields

Jl dx [D(x)(l - x2)(

0

dfy
dx

)2 + B() f,ﬁ}

=L, >0, (A3

so that the spectrum is positive definite. It can be
. shown that the eigenfunctions f, form a complete
system; hence we may represent G, as

Gy = 3 BOIAO)

A9
2 L (A9)
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which along with Eq. (A8) clearly implies
Golx,x) > 0. (A10)

For the case in which B and D are constant, we
obtain f, =.(2n + D¥?P, and L, = Dn(n + 1) + B,
where the P, are the even-indexed Legendre poly-
nomials. In general, for reasonable D(x), B(x), the
f. are regular everywhere and we shall, therefore,
assume in the following that Gy(x,y) is everywhere
finite [with the exception of the singular point in
Eq. (A4), viz.,x,y = 1].

In order to show that G, is positive for x # y we
return to Eq. (AS) and choose a new independent
variable z(x) such that

dx (Al1)

— = D)1 — x2) > 0.
The integral of (A11) is
z dx’
I Al2
7 J D& - x?) (A2

so that z(0) = 0 and z(1) = «. Multiplying (AS) by
dx/dz leads to

[— ;—22 + C(z)]Go(z,zo) = 5z — z0), (A3)
Z

where C(z) = (dx/dz)B(z) > 0 and we have em-
ployed the well-known rule that 8[x(z) — y] = 6(z
— zo)/ |dx/dz|, where x(zo) = y. According to Eq.
(A13), the curvature of G, is determined by the
sign of G,. G, is concave upward in the upper half
plane, concave downward in the lower half plane,
and has a point of inflection if it vanishes. Thus, if
G, is to remain finite, it must be asymptotically
flat as z — =, and according to the boundary con-
ditions it is also asymptotically flat as z — 0. Since
G, is positive at z = z,, and thus concave upward
on either side of z = z,, it cannot vanish anywhere
and still become flat as z — 0, «. Thus, it must
be positive everywhere.

APPENDIX B
Step-Function Albedo

In order to make contact with previous studies,
we may specialize our stability condition in Eq.
(2.26) to the case in which the absorption changes
discontinuously at the iceline, so that

a(x,x;) = awblx, — x) + a;0x — x5}, (B

where a, and a; are given constants for which
aw > a;, and @ is the unit step function. Since the
derivative of 0 is a delta function, Eq. (2.27
reduces to :

F\) = S(x)aw — ay) Jl dzGo(xs,2)G\(z,%5).  (B2)

0
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If we insert the spectral representation

G)\(Zaxs) = Z M 3

B3
Y (B3)

where the f, are the orthonormal eigenfunctions of
L which we assume to be complete, and the L, are
the eigenvalues which we assume ‘to be positive
definite (as proven for general diffusive models in
Appendix A), then Eq. (B2) takes the form

‘ : (fulx )P
FA) =S — —_—
M) = Se)ay — an) 3 7=

For A > 0, F(\) has simple poles at A = L, and
changes sign as A passes each L,. However, for
A < 0 both F(A) and dF(A)/d\ are positive definite,
and AF(\) decreases monotonically to —e. Thus, for
this case the graphical solution of Eq. (2.26),

K, dQ
Q dx;

will have the qualitative form shown in Fig. 4,
already discussed for the general case in Section 3.

(B4)

= AF(N),
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